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Abstract

Recently a 13-interval magic asymmetrical gradient stimulated echo (MAGSTE) sequence has been proposed for accurate
displacement measurements in the presence of spatially varying background gradients. In this paper, the commonly used trapezoidal
and sine shaped gradients are studied for the MAGSTE sequence, and the magic asymmetrical gradient ratio and b-factor are
provided. The derivation enables the MAGSTE sequence to be implemented on systems with non-negligible gradient rise times.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Pulsed field gradient (PFG) NMR has been an impor-
tant method for measuring molecular displacement [1,2].
For molecular diffusion processes in homogeneous sam-
ples of infinite size, the spin density is constant and its
displacement propagator is Gaussian. Under these con-
ditions the diffusion attenuation can be written as:

EðgaÞ
Eð0Þ ¼ expf�Dðc � ga � dÞ

2 � ðD� d=3Þg; ð1Þ

where E(0) and E(ga) are the echo intensities with the ap-
plied rectangular gradient at the strength of 0 and ga,
respectively; D is the diffusion coefficient; d is the gradi-
ent pulse duration; and D is the diffusion time between
the leading edges of the pulsed gradients. Eq. (1) is accu-
rate if the spins experience only the applied external gra-
dients. However, in addition to the applied gradients,
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there are also background gradients (gb) created by the
microscopic and/or macroscopic heterogeneity of inho-
mogeneous samples. Stejskal and Tanner [1] studied
the combined effects of a time-dependent magnetic field
gradient and a constant gradient on the measurement of
the molecular diffusion using a spin echo experiment and
found the echo intensity attenuation to be

EðgaÞ
Eð0Þ ¼ exp �c2D

2

3
s3g2b þ d2 D� 1

3
d

� �
g2a

��

�d t21 þ t22
� �

þ d t1 þ t2ð Þ þ 2

3
d2 � 2s2

� �
ga � gb

��
;

ð2Þ
where s is half the duration of the echo time, t1 is the
pre-gradient delay, and t2 = 2s�(t1 + D + d) is the time
between the end of the second gradient pulse and the
peak of the echo. According to Eq. (2), it is necessary
to know the background gradient to measure the diffu-
sion constant precisely. Assuming that the background
gradients are spatially constant along the route of the
spins� displacement and can be modeled by a zero-mean
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Gaussian function with its variance r across the sample,
Zhong and Gore [3] showed that the diffusion measure-
ment from the spin echo experiment can be written as

Dapp ¼ D 1� 1

2
D crð Þ2 TE � D=2ð Þ2D

� �
; ð3Þ

which is a function of the background gradient, echo
time and evolution time. They also showed that the echo
intensity had a non-linear dependence on the diffusion
time in phantoms and various types of excised tissues,
demonstrating that background gradients can affect
the diffusion measurements.

To improve the measurement, Karlicek and Lowe
[4] developed an alternating pulse filed gradient
(APFG) sequence, which strongly reduced the effect
of the background gradients. Cotts et al. [5] proposed
a number of sequences based on bipolar gradients
and stimulated echo (STE) to deal with the case of
short transverse relaxation times. Latour et al. [6] de-
signed a more effective sequence combining the APFG
and STE sequence. All these sequences can suppress
the artifacts from constant background gradients and
have been reviewed by Johnson [2]. However, the the-
oretical analysis and experimental evidence provided by
Seland et al. [7] showed that the application of the
bipolar PGSTE may fail to suppress all of the cross
terms between the background and the applied gradi-
ents for long evolution times. Recently, Sun et al.
[8,9] reported an asymmetric diffusion coding scheme
that suppresses the cross terms between the applied
and the background gradients during the encoding
and decoding interval independently. This allows an
accurate diffusion measurement even when spins dis-
place to positions where the local background gradi-
ents are uncorrelated after the storage interval. This
coding scheme has been demonstrated in phantoms
with simulated background gradients [8,9] and natu-
rally generated background gradients [10]. In this pa-
per, the magic asymmetric gradient ratio (MAGR)
and the b-factor for commonly used trapezoidal and
sine shaped gradients are derived and analyzed such
that the magic asymmetric gradient stimulated echo
(MAGSTE) sequence can be implemented on systems
with non-negligible gradient rise time.
2. MAGSTE sequence analysis

2.1. General

Due to the symmetry of the MAGSTE sequence (Fig.
1) in k-space, MAGR can be derived by analyzing the
diffusion processes during either the encoding or decod-
ing interval [11]. In this study, we choose the encoding
interval for the analysis. The wave-number k and b-fac-
tor are defined, respectively, as:
kðtÞ ¼ kð0Þ þ c �
Z t

0

fgaðt0Þ þ gbðt0Þg dt0;

bðtÞ ¼ bð0Þ þ
Z t

0

kð0Þ þ c
Z t0

0

ðgaðt00Þ þ gbðt00ÞÞ dt00
( )2

dt0;

ð4Þ
where k(0) and b(0) are the wave-number and b-factor at
the beginning of the diffusion interval under consider-
ation. For background gradients whose correlation time
is longer than the coding interval 2s, they can be mod-
eled by a constant gradient gb. To derive the MAGR,
the b-factor needs to be computed throughout the
encoding interval. In general, the b-factor includes the
cross term of the external gradient and background gra-
dients and their respective quadratic terms

bð2sÞ ¼ f ðg2a; gagb; g2b; g; . . .Þ; ð5Þ
where g is the MAGR, defined as the ratio of the two
pulsed gradients during the coding interval, namely,
g = ga1/ga2 or ga4/ga3 (Fig. 1). The MAGR can then be
treated as a free parameter to null the cross term at
the end of the coding interval. The quadratic back-
ground gradient term will drop out, when the echo
intensity is normalized to that acquired without the
external gradients. For conventional PGSTE sequences,
the cross term during the encoding time needs to be
compensated for during the decoding time, which re-
quires that spins experience the same background gradi-
ent throughout the echo time. Thus, the nulling of the
cross term right before the storage time allows the con-
straint to be relaxed to the coding interval only. Because
the storage time can be as long as the longitudinal relax-
ation time, the MAGSTE sequence provides an ap-
proach to measure the displacement propagator
accurately even when the storage time is longer than
the correlation time of the background gradients.
2.2. Trapezoidal shaped gradients

Because of the finite rise time of the external gradient,
even with good pre-emphasis compensation, shaped gra-
dients are widely regarded as having higher wave form
fidelity and less eddy currents than rectangular gradi-
ents. In addition, trapezoidal gradients can have very
high spatial encoding efficiencies and are easy to imple-
ment. Here, we choose them for the MAGSTE sequence
analysis. The temporal symmetry in k-space around the
center of the storage time guarantees the same MAGR
for both the encoding and decoding intervals even when
the equality of pre- and post-gradient delays d1 and d2 is
not maintained. Thus, the notation of d1 and d2 is cho-
sen to be consistent with those used by Sun et al. [8,9].
The mathematical description of the applied gradients
between the excitation and the first refocusing pulse is
given as below



Fig. 1. The conventional 13-interval PGSTEsequencewith bipolar gradients of equal amplitude (SchemeA) andMAGSTEsequence (SchemesBandC)
whose two lateral pulsed gradients are modulated by theMAGR. If the background gradient is described by a constant gradient gb, all coding schemes
can correct its effect upon the diffusionmeasurement.When the variationof the backgroundgradient ismodeled by a correlation function, SchemeA fails
to suppress all the background gradient effects. Because the cross term of background and applied gradient is compensated for during the encoding and
decoding interval independently, the MAGSTE sequence can measure the diffusion accurately even with a change of the decoding gradient polarity.
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g ¼ 0 for 0 < t < d1

g ¼ g � ga �
t � d1
dr

for d1 < t < d1 þ dr

g ¼ g � ga for d1 þ dr < t < d1 þ dr þ d

g ¼ g � ga � 1� t � d1 þ dr þ dð Þ
df

� �
for d1 þ dr þ d < t < d1 þ dr þ dþ df

g ¼ 0 for d1 þ dr þ dþ df < t < s;

ð6Þ

where dr and df are the rise and fall time of the trapezoi-
dal gradient, respectively. The applied gradients during
the second half of the encoding interval are given by

g¼ 0 for s< t< sþd1

g¼�ga �
t�ðsþd1Þ

dr
for sþd1 < t< sþd1þdr

g¼�ga for sþd1þdrþ< t< sþd1þdrþd

g¼�ga � 1� t�ðsþd1þdrþdÞ
df

� �
for sþd1þdrþd< t< sþd1þdrþdþdf

g¼ 0 for sþd1þdrþdþdf < t< 2 � s:

ð7Þ
Furthermore, the background gradient during the cod-
ing interval is modeled by a constant gradient:

g ¼ gb for 0 < t < 2 � s: ð8Þ

Evolutions of the wave-number and b-factor are derived
by substituting Eqs. (6)–(8) into Eqs. (4) and (5), and
the results are listed in Tables 1 and 2, respectively. Be-
cause the b-factor is very lengthy, only its incremental va-
lue for each segmented interval is given. In all derivations,
we assume that the gradient rise time is equal to the fall
time. At the end of the encoding interval, the b-factor
can be shown to be

bð2sÞ ¼ �c2ðA � g2a þ B � g2b þ C � ga � gbÞ; ð9Þ

where A, B, and C are functions of the MAGR and time
intervals:

A¼ 1=60f20d3ð1þgð3þ4gÞÞþ30d2ð4g2d2þ2ð1þgÞ2d1
þð3þgð8þ11gÞÞdrÞþ5ddrð48g2d2þ24ð1þgÞ2d1
þð23þgð60þ83gÞÞdrÞþ2d2r ð60g2d2þ30ð1þgÞ2d1
þð23þgð60þ83gÞÞdrÞg; ð10Þ



Table 1
The evolution of the wave-number k during the encoding interval of
the MAGSTE sequence

Segment interval Wave-number k

t = d1 cgb Æ d1
t = d1 + dr cgb Æ (d1 + dr) + gcgadr/2
t = d1 + dr + d cgb Æ (d1 + dr + d) + gcga(dr + 2d)/2
t = d1 + dr + d + df cgb Æ (d1 + 2dr + d) + gcga(dr + d)
t = s cgb Æ s + gcga(dr + d)
t = s + d2 �cgb Æ (d1 + 2dr + d)�gcga(dr + d)
t = s + d2 + dr �cgb Æ (d1 + dr + d)�cga Æ (dr/2 + g(d + dr))
t = s + d2 + dr + d �cgb Æ (d1 + dr)�cga Æ (d/2 + (g + 1/2)(d + dr))
t = s + d2 + dr + d + df �cgbd1�cga Æ (g + 1)(d + dr)
t = 2s �cga Æ (g + 1)(d + dr)

After the refocusing pulse, the wave-number polarity is flipped. The
wave-number due to the background gradient is refocused during the
second half of the encoding interval. Thus, the wave-number does not
depend on the background gradient at the end of the encoding period.
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B ¼ 2=3ðdþ d1 þ d2 þ 2drÞ3; ð11Þ

C ¼ 1=6ðdþ drÞf12gd22 þ 6ð1þ gÞd21 þ 2ð1þ 5gÞd2

þ 12d1ðdr þ 2gd2 þ 3gdrÞ þ drð7dr þ 48gd2 þ 41gdrÞ
þ dð7dr þ 24gd2 þ 41gdr þ 6ð1þ 3gÞd1Þg: ð12Þ

To suppress the cross term in Eq. (9) such that the cou-
pling is removed at the end of the encoding interval, the
coefficient C of the cross term is set to be zero. The solu-
tion for the MAGR is

g¼� 2d2þ6d1ðdþd1Þþdrð12d1þ7ðdrþdÞÞ
dð10dþ18d1 þ24d2þ41drÞþ6d1ðd1þ4d2þ6drÞþ12d2ðd2þ4drÞþ41d2r

:

ð13Þ

Table 2

The evolution of the b-factor during the encoding interval of the MAGSTE sequence

Segment interval Incremental b-factor

0 < t < d1 1
3 c

2g2bd
3
1

d1 < t < d1 + dr
c2

60 drf20g2bð3d
2
1 þ 3d1dr

d1 + dr < t < d1 + dr + d c2

24ðgbþggaÞ
f�ð2gbðd1 þ d

d1 + dr + d < t < d1 + dr + d + df
c2

60 drf20g2bð3ðd1 þ dÞ2 þ
þ4drð14dþ 5d1Þ þ 3

d1 + dr + d + df < t < s c2

3gb
f�ðgbðdþ d1 þ 2drÞ
þggaðdþ drÞÞ3g

s < t < s + d2
c2

3gb
f�ðgbðdþ d1 þ 2drÞ
þggaðdþ drÞÞ3g

s + d2 < t < s + d2 + dr
c2

60 drf3g2ad
2
r � 15gagbd

2
r

þ60ðgbðdþ d1 þ 2dr

s + d2 + dr < t < s + d2 + dr + d c2

24ð�gaþgbÞ
fð2gbðd1 þ dr

s + d2 + dr + d < t < s + d2 + dr + d + df
c2dr
60 f20g2bð3d

2
1 þ 3d1dr þ

þdrð20d1 þ 9dr þ 12

s + d2 + dr + d + d < t < 2s c2

3gb
f�ðgað1þ gÞðdþ dr
Because the quadratic term of the background gradients
is absent, and the cross term is zero after setting the
MAGR according to Eq. (13), the b-factor at the echo
time depends on the applied gradient only:

bðTSþ 4sÞ ¼ c2g2a
30

f20d3ð1þ ð3þ 4gÞgÞ þ 30d2ð3dr

þ ð1þ gÞ2ðTSþ 2d1Þ þ gð4gd2 þ ð8
þ 11gÞdrÞÞ þ 5ddrð23dr þ 12ð1þ gÞ2

� ðTSþ 2d1Þ þ gð48gd2 þ ð60þ 83gÞdrÞÞ
þ 2d2r ð23dr þ 15ð1þ gÞ2ðTSþ 2d1Þ
þ gð60gd2 þ ð60þ 83gÞdrÞÞg; ð14Þ

where TS is the storage time between the second and
third excitation pulse (Fig. 1).

2.3. Sine shaped gradients

We provide the results for sine shaped gradients with-
out the stepwise derivation. The MAGR is

g¼� ðp2�4Þd2þ2p2dd1þ2p2d21
ð4þ3p2Þd2þ2p2dð3d1þ4d2Þþ2p2ðd21þ4d1d2þ2d22Þ

;

ð15Þ
where d is the duration of the sine gradient. The b-factor
at the echo time is given as

bðTSþ 4sÞ ¼ c2g2ad
2

p2
f3dþ 4 � TSþ 8ðd1 þ g

� ðdþ 2d1 þ TSÞÞ þ g2ð11dþ 4

� ð4d2 þ 2d1 þ TSÞÞg; ð16Þ

where ga is the amplitude of the sine shaped gradient.
þ d2r Þ þ 5ggagbdrð4d1 þ 3drÞ þ 3ðggadrÞ2g

rÞ þ ggadrÞ3 þ ð2gbðd1 þ dr þ dÞ þ ggaðdr þ 2dÞÞ3g
9ðd1 þ dÞdr þ 7d2r Þ þ 5ggagbð24dðdþ d1Þ
1d2r Þ þ ðggaÞ2ð60d2 þ 100ddr þ 43d2r Þg
þ ggaðdþ drÞÞ3 þ ðgbðdþ d1 þ d2 þ 2drÞ

þ ggaðdþ drÞÞ3 þ ðgbðdþ d1 þ d2 þ 2drÞ

� 60gbdrðgbðdþ d1 þ 2drÞ þ ggaðdþ drÞÞ
Þ þ ggaðdþ drÞÞ2 þ 20drðg2bdr þ gagbðdþ d1 þ 2drÞ þ gg2aðdþ drÞÞg
þ dÞ þ gaðdr þ 2gðdr þ dÞÞÞ3 � ð2gbðd1 þ drÞ þ gað2dþ dr þ 2gðdr þ dÞÞÞ3g

d2r Þ þ 5gagbð12dðdr þ 2d1Þð1þ gÞ
gð2d1 þ drÞÞÞ þ g2að60d2ð1þ gÞ2 þ 20ddrð1þ gÞð5þ 6gÞ þ d2r ð43þ 20gð5þ 3gÞÞÞg
ÞÞ3 þ ðgbd1 þ gaðdþ drÞð1þ gÞÞ3g
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2.4. Compatibility with previous results

To examine the results, we show that the above der-
ivation is equivalent to the familiar Stejskal–Tanner
equation, and consistent with the results derived by
Sun et al. [8,9] and Galvosas et al. [10]:

(i) For the bipolar PGSTE sequence (13-interval
PGSTE) [5], its equivalent MAGR is equal to unity.
In th e absence of the background gradients, if the
rise time of the trapezoidal gradient, pre-gradient
delay and post-gradient delay are zero, Eq. (14)
can be simplified to

bðTSþ 4sÞ ¼ ð2cgadÞ
2 TSþ 2d� 2d

3

� �
: ð17Þ

(ii) For the 9-interval PGSTE sequence [5], its equiva-
lent MAGR is zero and Eq. (14) can be shown to be

bðTSþ 4sÞ ¼ ðcgadÞ
2 TSþ d� d

3

� �
: ð18Þ
Fig. 2
dr. Th
With
by th
If we resort to the conventional evolution time def-
inition, that is, by substituting Deff = TS + 2d and
deff = 2d to the bipolar PGSTE sequence, and
Deff = TS + d and deff = d to the Tanner PGSTE
. The MAGR plotted as a function of the pre- and post-gradient delays d1, d
e MAGR has a range between �0.2 and �0.14. When the trapezoidal gradien
the increment of the gradient rise time, the minimum MAGR increases and t
e gradient rise time.
sequence, respectively, Eqs. (17) and (18) can be
rewritten in their familiar form
bðTSþ 4sÞ ¼ ðcgadeffÞ
2 Deff �

1

3
deff

� �
: ð19Þ

(iii) If we set dr = 0, the trapezoidal shaped gradient
becomes a rectangular gradient and Eq. (13) can
be shown to be equal to

g ¼ � d2 þ 3d1ðdþ d1Þ
5d2 þ 9dd1 þ 3d21 þ 12ðdþ d1Þd2 þ 6d22

;

ð20Þ
which is consistent with Eq. (21) derived by Sun
et al. [8]. The authors would like to point out the
graphical error in Eq. (22) of [8], and the correct
expression should be
bðTSþ 4sÞ ¼ c2g2ad
2

3
f3ð1þ gÞ2ðTSþ 2d1Þ

þ 2ð1þ 3gÞdþ 4g2ð2dþ 3d2Þg: ð21Þ
This result can be shown to be equivalent to that
derived by Galvosas et al. [10].
2, pulsed gradient plateau duration d, and characteristic rise time
t becomes rectangular (dr = 0), a large curvature can be observed.
he curvature is reduced because the applied gradient is smoothed
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3. Results and discussion

According to the theory, the MAGR depends on the
timing intervals during the coding period and the wave-
form of the applied gradients. For the case of the trap-
ezoidal gradients, as shown in Fig. 2, its MAGR is
between �0.2 and �0.14. The absolute magnitude of
the MAGR for shaped gradients is smaller than that
for the rectangular gradients. The range and curvature
of the MAGR decrease when the shaped gradients have
a longer rise time. It is important to notice that the
MAGR used here and previously by Sun et al. [8,9] is
the inverse of the magic pulsed field gradient (MPFG)
ratio used by Galvosas et al. [10].

As shown previously, the negative MAGR value re-
sults in the two bipolar gradients having the same polar-
ity. The effective wave-number is therefore less than the
conventional bipolar gradient coding scheme. In addi-
tion, the shaped gradient has a reduced coding efficiency
compared with rectangular gradients. Fortunately, for
the MAGSTE sequence, the decreased coding efficiency
using the shaped gradients is compensated, though not
fully, by the reduced magnitude of MAGR.
4. Conclusions

The MAGSTE sequence decouples the applied gradi-
ent and the background gradients during the encoding
and decoding intervals independently. It thereby enables
accurate displacement measurements in complex struc-
tures where the correlation time of the background gra-
dient is longer than the coding interval. For system with
non-negligible gradient rise time, the gradient shape is
smoothed and the MAGR is reduced. The reduced cod-
ing efficiency for the MAGSTE sequence using shaped
gradients is compensated by the decreased MAGR
magnitude.
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